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Abstract of the Dissertation 

The Overcrowded Stage and the Evolutionary Play: 

Resistance of Brassica rapa L. (Brassicaceae) to Multiple Enemies 

by 

André Levy Martins Coelho 

Doctor of Philosophy 

in 

Ecology and Evolution 

Stony Brook University 

2004 

Ecosystems contain complex networks of biotic interactions. In order to 

understand the ecology of a species and the evolution of many of its traits it is 

important to incorporate many of these interactions into our studies. Plants, for 

example, are attacked by a plethora of enemies, including vertebrate and 

invertebrate herbivores, and fungal, bacterial, and viral pathogens. Although we 

have accumulated knowledge about plant defense mechanisms to particular 

enemies, we are still far from understanding how plants cope with multiple 

enemies. Do plants evolve defenses in a specific manner to a given enemy, or do 

the effects of multiple enemies condition evolutionary responses? I contributed to 

this field of inquiry with artificial selection experiments using rapid cycling 

Brassica rapa L. (Brassicaceae). I selected populations of B. rapa for greater 

resistance to a fungal pathogen, the cabbage leaf spot, Alternaria brassicicola. 

Lines that evolved greater resistance to A. brassicicola did not exhibit correlated 
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resistance to other enemies, particularly to larvae of three lepidopterans (Pieris 

rapae, Trichoplusia ni, and Spodoptera exigua), adults of a flea beetle (Phyllotreta 

cruciferae), or to the cabbage aphid (Brevicoryne brassicae). This suggests the 

independence of resistance to fungal pathogens and insect herbivores. In addition, I 

selected lines of B. rapa for divergent expression levels of anthocyanin pigments. 

These play important roles in response to abiotic factors, such as protection from 

UV light, but also in biotic interactions, for instance providing color to flowers that 

attract pollinators. I found that lines expressing higher levels of anthocyanins were 

more susceptible to P.rapae and P. cruciferae and less susceptible to T. ni and A. 

brassicicola. Feeding by S. exigua and colony size of B. brassicae did not differ 

among lines producing extreme anthocyanin contents. This presents a varied suite 

of resistance effects of anthocyanins, and illustrates the complexities of conflicting 

selection pressures that affect the evolution of plant defense. 
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Introduction 

Organisms face a number of selection pressures, including selection upon form, 

physiology and behavior, reproductive performance, and response to abiotic and biotic 

stresses. An important component of Evolutionary Ecology deals with how organisms 

adapt to multiple, at times conflicting, selection pressures. For instance, Life History 

Theory attempts to predict the optimal strategy given different constraints upon life-history 

parameters, such as age at first reproduction or reproductive rate. 

This approach has also been applied to plants with regard to their allocation of 

resources to different functions, including growth, reproduction and defense. Different 

patterns of allocation to these competing needs constitute different strategies. Within each 

of these basic functions, there are multiple components that also compete for resources. 

Thus one might find trade-offs between aboveground versus belowground growth, or 

allocation trade-offs to male versus female reproductive structures. 

Plants may also allocate resources to different forms of defense. Some plant 

defense theories have considered how plants might allocate to different chemical defense 

pools. The Carbon/Nutrient Balance hypothesis (Bryant et al. 1983) models how plans 

allocate surplus resources to carbon- or nitrogen-based defenses depending on 

environmental conditions. The Resource Availability (Coley et al. 1985) and the Plant 

Apparency hypothesis (Feeny 1976; Rhoades and Cates 1976) consider how plants evolved 

the production of  ‘quantitative’ versus ‘qualitative’ defenses, depending on their inherent 

growth rate or apparency to enemies. Plants may also allocate resources to different 
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defense strategies, such as resistance versus tolerance (Fineblum and Rausher 1995; 

Fornoni et al. 2003; Mauricio et al. 1997; Stowe 1998; Tiffin 2000), or constitutive versus 

induced defenses (Adler and Karban 1994; Agrawal et al. 1999; Brody and Karban 1992; 

English-Loeb et al. 1998; Gianoli 2002). 

The selection pressures associated with biotic interactions are also quite variable. 

Plants are involved in mutualistic interactions with pollinators, seed/fruit dispersers, and 

mycorrhizae. They are also attacked by a multitude of enemies, including vertebrate and 

invertebrate herbivores, bacterial and fungal pathogens, leaf and root feeders, tissues-

chewers and phloem-suckers. Under the principal of optimal defense, plants must evolve a 

strategy of allocation to different components of defense that will given them highest 

fitness, given the impact of the enemies it is most likely to encounter. In order to properly 

understand how plant defense adapts to an enemy, we must understand both how enemy 

damage impacts plant fitness, the arsenal of plant defenses and how they impact individual 

enemies and their population densities, and how these interactions play themselves out in 

ecological and evolutionary time. 

The context of multiple enemies poses additional challenges. The amount of enemy 

damage or its combined effect on plant fitness may be nonadditive when enemies act in 

each others presence (criteria 3 in Stinchcombe and Rausher 2001). The effect of a defense 

trait upon a given enemy may be dependent on the presence or absence of another enemy, 

i.e.,  a defense trait my be express a genotype-by-environment interaction, in which the 

environmental variable is the presence of an additional enemy (criteria 2 in Stinchcombe 

and Rausher 2001). Finally, plant defense traits may also impact more than one enemy, i.e.,  
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there may be genetic correlations in resistance to different enemies (criteria 1 in 

Stinchcombe and Rausher 2001).  

The present works focuses on this later aspect: how defense traits impact different 

enemies and what characteristics might unite members if an enemy suite. Incorporating the 

context of multiple enemies into plant-enemy studies will enlighten our understanding of 

the nature of plant defense, of coevolution between plants and their enemies, of the 

ecological constraints imposed on the evolution of plant defense, and hopefully provide 

insights for breeding agricultural crops. 

In Chapter 2, I review the relevant literature on this topic. I outline several 

hypothetical patterns of enemy suites and discuss which plant traits are likely to impact a 

broad set of enemies versus a specific enemy suite. There are disparate sets of literature 

that pertain to this topic, ranging from ecology and quantitative genetics, to traditional 

pharmacological studies to more modern genomics. I enumerate the relevant fields, how 

they can contribute to our understanding of the specificity of plant defense, review some of 

the literature, and draw some conclusions from the available evidence.  

Chapters 3 and 4 describe artificial selection experiments I performed to address the 

general question of specificity of plant resistance, using the model system: rapid cycling 

Brassica rapa (Brassicaceae) and a variety of its associated enemies. In Chapter 3, I 

describe the use of one of its plant enemies (the fungal pathogen Alternaria brassicicola) 

as the selective agent. Several generations of artificial selection resulted in plants 

populations that were more resistant to A. brassicicola. These were subsequently 

contrasted with control plants for resistance to additional enemies, in order to estimate 
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correlations in resistance between enemies. In parallel, I attempted to select populations of 

B. rapa using other enemies, namely larvae of two lepidopterans (Pieris rapae and 

Trichoplusia ni). These artificial selection experiments did not successfully generate 

distinct populations. These experiments are described briefly in Appendix A. 

These experiments using the outcome of an interaction between the plant and its 

enemy as the selected character do not consider any particular plant resistance trait. Rather, 

resistance is treated as a plant box, as any combination of characters (unknown to the 

observer) that affect the amount of enemy damage. A complementary approach is to 

artificially select populations for extreme states of a putative defense character. This was 

the approach followed in the experiment described in Chapter 4. Here I describe an 

artificial selection of populations of B. rapa for divergent anthocyanin expression in 

vegetative tissues. During selection, plants were chosen merely on the basis of the 

character state, regardless of its biotic effect. Divergent lines were compared with regard to 

resistance to a number of enemies. 
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